The classic teapot, shown in Fig. 9.1, is perhaps the best-known icon of computer
graphics. Since it was modeled in 1975 by Martin Newell [CROWS7], it has been
used by dozens of researchers as a structure for demonstrating the latest techniques
for producing realistic surfaces and textures. Modeling the elegant teapot required
specifying its shape as a collection of smooth surface elements, known as bicubic
patches. Smooth curves and surfaces must be generated in many computer graph-

ics applications. Many real-world objects are inherently smooth, and much of
computer graphics involves modeling the real world. Computer-aided design
(CAD), high-quality character typefaces, data plots, and artists’ sketches all con-
tain smooth curves and surfaces. The path of a camera or object in an animation
sequence is almost always smooth; similarly, a path through intensity or color
space (Chapters 12 and 11) often must be smooth.

Figure 9.1

The famous teapot—a model consisting of an assemblage of smooth, curved surfaces.




Figure 9.2
A 3D object represented by
polygons.

Figure 8.3

A cross-section of a curved
shape (dashed line) and its
polygonal representation
(solid lines).
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The need to represent curves and surfaces arises in two cases: in modeling
existing objects (a car, a face, or a mountain) and in modeling from scratch, where
no preexisting physical object is being represented. In the first case, a mathematj.
cal description of the object may be unavailable. Of course, we can use as a mode]
the coordinates of the infinitely many points of the object, but this approach is not
feasible for a computer with finite storage. More often, we merely approximate the
object with pieces of planes, spheres, or other shapes that are easy to describe
mathematically, and require that points on our model be close to corresponding
points on the object.

In the second case, when there is no preexisting object to model, the user cre-
ates the object in the modeling process; hence, the object matches its representa-
tion exactly, because its only embodiment is the representation. To create the
object, the user may sculpt the object interactively, describe it mathematically, or
give an approximate description to be filled in by some program. In CAD, the com-
puter representation is used later to generate physical realizations of the abstractly
designed object.

This chapter introduces the general area of surface modeling. The area is
broad, and only the three most common representations for 3D surfaces are pre-
sented here: polygon mesh surfaces, parametric surfaces, and quadric surfaces. We
also discuss parametric curves, both because they are interesting in their own right
and because parametric surfaces are a generalization of the curves.

Solid modeling, introduced in the next chapter, is the representation of vol-
umes completely surrounded by surfaces, such as a cube, an airplane, or a build-
ing. The surface representations discussed in this chapter can be used in solid
modeling to define each of the surfaces that bound the volume.

A polygon mesh is a set of connected, polygonally bounded planar surfaces.
Open boxes, cabinets, and building exteriors can be easily and naturally repre-
sented by polygon meshes, as can volumes bounded by planar surfaces. Polygon
meshes can be used, although less easily, to represent objects with curved surfaces,
as in Fig. 9.2; however, the representation is only approximate. Figure 9.3 shows
the cross-section of a curved shape and the polygon mesh representing that shape.
We can make the obvious errors in the representation arbitrarily small by using
more polygons to create a closer piecewise linear approximation, but this approach
increases space requirements and the execution time of algorithms processing the
representation. Furthermore, if the image is enlarged, the straight edges again
become obvious.

Parametric polynomial curves define points on a 3D curve by using three
polynomials in a parameter ¢, one for each of %, y, and z. The coefficients of the
polynomials are selected such that the curve follows the desired path. Although
various degrees of polynomials can be used, we present only the most common
case: cubic polynomials (that have powers of the parameter up through the third).
The term cubic curve will often be used for such curves.

Parametric bivariate (two-variable) polynomial surface patches define the
coordinates of points on a curved surface by using three bivariate polynomials, one
for each of x, y, and z. The boundaries of the patches are parametric polynomlﬁl
curves. Many fewer bivariate polynomial surface patches than polygonal patches
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are needed to approximate a curved surface to a given accuracy. The algorithms for
working with bivariate polynomials, however, are more complex than are those for
polygons. As with curves, polynomials of various degrees can be used, but we dis-
cuss here only the common case of polynomials that are cubic in both parameters.
The surfaces are accordingly called bicubic surfaces.

Quadric surfaces are those defined implicitly by an equation f(x, y, z) = 0,
where f is a quadric polynomial in x, y, and z. Quadric surfaces are a convenient
representation for the familiar sphere, ellipsoid, and cylinder.

Chapter 10, on solid modeling, incorporates these representations into systems
to represent not just surfaces, but also bounded (solid) volumes. The surface repre-
sentations described in this chapter are used, sometimes in combination with one
another, to bound a 3D volume.

MESHES

A polygon mesh is a collection of edges, vertices, and polygons connected such
that each edge is shared by at most two polygons. An edge connects two vertices,
and a polygon is a closed sequence of edges. An edge can be shared by two adja-
cent polygons, a vertex is shared by at least two edges, and every edge is part of
some polygon. A polygon mesh can be represented in several different ways, each
with its advantages and disadvantages. The application programmer’s task is to
choose the most appropriate representation. Several representations can be used in
a single application: one for external storage, another for internal use, and yet
another with which the user interactively creates the mesh.

Two basic criteria, space and time, can be used to evaluate different represen-
tations, Typical operations on a polygon mesh are finding all the edges incident to
a vertex, finding the polygons sharing an edge or a vertex, finding the vertices con-
nected by an edge, finding the edges of a polygon, displaying the mesh, and identi-
fying errors in representation (e.g., a missing edge, vertex, or polygon). In general,
the more explicitly the relations among polygons, vertices, and edges are repre-
sented, the faster the operations are and the more space the representation requires.
Woo [WOOB85] has analyzed the time complexity of nine basic access operations
and nine basic update operations on a polygon-mesh data structure.

In Sections 9.1.1 and 9.1.2, several issues concerning polygon meshes are dis-
cussed: representing polygon meshes, ensuring that a given representation is cor-
rect, and calculating the coefficients of the plane of a polygon.

9.1.1 Representing Polygon Meshes

In this section, we discuss three polygon-mesh representations: explicit, pointers to
a vertex list, and pointers to an edge list. In the explicit representation, each poly-
gon is represented by a list of vertex coordinates:

P =((x1,¥15 21)s (062, ¥2, 22), - s (s Vs Zp))-
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The vertices are stored in the order in which we would encounter them were we
traveling around the polygon. There are edges between successive vertices jp the
list and between the last and first vertices. For a single polygon, this representatiop
is space-efficient; for a polygon mesh, however, much space is lost, because the
coordinates of shared vertices are duplicated. Even more of a problem, there g 1o
explicit representation of shared edges and vertices. For instance, to drag a vertey
and all its incident edges interactively, we must find all polygons that share the ye,.
tex. This search requires comparing the coordinate triples of one polygon wig,
those of all other polygons. The most efficient way to do this would be to sort al] iy
coordinate triples, but this process is at best an N log, N one, and even then there jg
the danger that the same vertex might, due to computational roundoff, haye
slightly different coordinate values in each polygon, so a correct match mighg
never be made.

With this representation, displaying the mesh either as filled polygons or a5
polygon outlines necessitates transforming each vertex and clipping each edge of
each polygon. If edges are being drawn, each shared edge is drawn twice, which
causes problems on pen plotters, film recorders, and vector displays, due to the
overwriting. A problem may also be created on raster displays if the edges are
drawn in opposite directions, in which case extra pixels may be intensified.

Polygons defined with pointers to a vertex list, the method used by SPHIGS,
have each vertex in the polygon mesh stored just once, in the vertex list
V= ((x), ¥1» 21)s -+ » (X Yo Z)). A polygon is defined by a list of indices (or point-
ers) into the vertex list. A polygon made up of vertices 3, 5, 7, and 10 in the vertex
list would thus be represented as P = (3, 5, 7, 10).

This representation, an example of which is shown in Fig. 9.4, has several
advantages over the explicit polygon representation. Since each vertex is stored
just once, considerable space is saved. Furthermore, the coordinates of a vertex can
be changed easily. On the other hand, it is still difficult to find polygons that share
an edge, and shared polygon edges are still drawn twice when all polygon outlines
are displayed. We can eliminate these two problems by representing edges explic-
itly, as in the next method.

When defining polygons by pointers to an edge list, we again have the vertex
list V, but represent a polygon as a list of pointers not to the vertex list, but rather to
an edge list, in which each edge occurs just once. In turn, each edge in the edge list
points to the two vertices in the vertex list defining the edge, and also to the one or

Vo= (Vy, Vo, Vi, Vi) = (X1, Y4, 29)s-0(Xas Vas 24))
Pi=(1,2,4)

P>=(4,2,3)

Figure 9.4

Polygon mesh defined with indexes into a vertex list.
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Figure 9.5 Polygon mesh defined with edge lists for each polygon (A represents null).

two polygons to which the edge belongs. Hence, we describe a polygon as
P=(E, ..., E,), and an edge as E = (V|, V,, P}, P»). When an edge belongs to
only one polygon, either P; or P, is null. Figure 9.5 shows an example of this rep-
resentation.

We show polygon outlines by displaying all edges, rather than by displaying
all polygons; thus, redundant clipping, transformation, and scan conversion are
avoided. Filled polygons are also displayed easily. In some situations, such as the
description of a 3D honeycomblike sheet-metal structure, some edges are shared
by three polygons. In such cases, the edge descriptions can be extended to include
an arbitrary number of polygons: E = (Vy, Vo, Py, Py, ..., P).

In none of these three representations (i.e., explicit polygons, pointers to verti-
ces, pointers to an edge list) is it easy to determine which edges are incident to a
vertex: All edges must be inspected. Of course, information can be added explic-
itly to permit determination of such relationships. For instance, the winged-edge
representation used by Baumgart [BAUM75] expands the edge description to
include pointers to the two adjoining edges of each polygon, whereas the vertex
description includes a pointer to an (arbitrary) edge incident on the vertex, and thus
more polygon and vertex information is available.

9.1.2 Plane Equations

When we are working with polygons or polygon meshes, we frequently need to
know the equation of the plane in which the polygon lies. In some cases, of course,
the equation is known implicitly through the interactive construction methods used
to define the polygon. If the equation is not known, we can use the coordinates of
three vertices to find the plane. Recall the plane equation

Ax+By+ Cz+D=0. (9.1)
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Figure 9.6 Calculating the area C of a triangle using Eqg. (9.2).

The coefficients A, B, and C define the normal to the plane, [A B C]. Given points
Py, P5, and P; on the plane, that plane’s normal can be computed as the vector
cross-product PP, x P1P; (or PoP3 x PPy, etc.). If the cross-product is zero, thep
the three points are collinear and do not define a plane. Other vertices, if any, can
be used instead. Given a nonzero cross-product, we can find D by substituting the
normal to [A B (] and any one of the three points into Eq. (9.1).

If there are more than three vertices, they may be nonplanar, either for numer-
ical reasons or because of the method by which the polygons were generated. Then
another technique for finding the coefficients A, B, and C of a plane that comes
close to all the vertices is better than the cross-product method. It can be shown
that A, B, and C are proportional to the signed areas of the projections of the poly-
gon onto the (y, z), (z, x), and (x, y) planes, respectively. For example, if the poly-
gon is parallel to the (x, y) plane, then A = B = 0, as expected: The projections of
the polygon onto the (y, z) and (z, x) planes have zero area. This method is better
than the cross-product method, because the areas of the projections are a function
of the coordinates of all the vertices and so are not sensitive to the choice of a few
vertices that might happen not to be coplanar with most or all of the other vertices,
or that might happen to be collinear. For instance, the area (and hence coefficient)
C of the polygon projected onto the (x, y) plane in Fig. 9.6 is just the area of the
trapezoid A, minus the areas of A| and A,. In general,

1 n
C= 3 Z()’i + Yiel) (Xig1 — X;)> (9.2)
=

where the operator @ is normal addition except that n @ 1 = 1. The areas for A and
B are given by similar formulae, except the area for B is negated (see Example
9.1).

Eg. (9.2) gives the sum of the areas of all the trapezoids formed by successive
edges of the polygons. If x;g| < x;, the area makes a negative contribution to the
sum. The sign of the sum is also useful: If the vertices have been enumerated in a
clockwise direction (as projected onto the plane), then the sign is positive; other-
wise, it is negative.

Once we determine the plane equation by using all the vertices, we can esti-
mate how nonplanar the polygon is by calculating the perpendicular distance from

Example 9.1

This function calculates
plane equation
coefficients.
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the plane to each vertex. This distance d for the vertex at (x, y, z) is

dﬁA.x".—i-B)’—FC:*FD. (9.3)
This distance is either positive or negative, depending on which side of the plane
the point is located. If the vertex is on the plane, then d = 0. Of course, to deter-
mine only on which side of a plane a point is, only the sign of & matters, so divi-
sion by the square root is not needed.

The plane equation is not unique; any nonzero multiplicative constant k
changes the equation, but not the plane. It is often convenient to store the plane
coefficients with a normalized normal; we can do so by choosing

r— : : 9.4)
which is the reciprocal of the length of the normal. Then, distances can be com-
puted with Eq. (9.3) more easily, since the denominator is 1.

Problem: Write a function that calculates the plane equation coefficients, given
n vertices of a polygon that is approximately planar. Assume that the polygon
vertices are enumerated counterclockwise, as viewed toward the plane from the
positive side of the plane. The vertices and the number of vertices are arguments
passed to the function.

Answer: Using Eq. (9.2), and similar equations for A and B, the program is
simply: :

FindPlaneCoefficients{float x[], float y[], float z[], int num_verts,
float *a, float *b, float *c, float *d)
{

float A, B,C,D;
int i,j;

A=B=C=00;

for (i = 0;i < num_verts; i++) {
j=(+1) % num_verts;
A+=ali] + 2])* ylj] ~ i)
B +=— (x[i] + x[j]) " (z[j] - 2[i]);
C+= (yli] +y[iD ™ (x{j] — xil);

A/=2.0;B/=20;C/=20;
D=—(A"x{0]+B"y[0] + C " z[0]);

*

* 4
[ B o B @ ai o+ ]
]} 1l

1]
OOowm=

*
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9.2 PARAMETRIC CUBIC CURVES
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Polylines and polygons are first-degree, piecewise approximations to curves and
surfaces, respectively. Unless the curves or surfaces being approximated are alsg
piecewise linear, large numbers of endpoint coordinates must be created and storeq
if we are to achieve reasonable accuracy. Interactive manipulation of the data g
approximate a shape is tedious, because many points have to be positioned pre-
cisely.

In this section, a more compact and more manipulable representation of piece-
wise smooth curves is developed; in Section 9.3 the mathematical development g
generalized to surfaces. The general approach is to use functions that are of 4
degree higher than that of the linear functions. The functions still generally only
approximate the desired shapes, but use less storage and offer easier interactive
manipulation than do linear functions.

The higher-degree approximations can be based on one of three methods.
First, we can express y and z as explicif functions of x, so that y = f{x) and z = g(x),
The difficulties with this approach are that (1) it is impossible to get multiple val-
ues of y for a single x, so curves such as circles and ellipses must be represented by
multiple curve segments; (2) such a definition is not rotationally invariant (to
describe a rotated version of the curve requires a great deal of work and may in
general require breaking a curve segment into many others); and (3) describing
curves with vertical tangents is difficult, because a slope of infinity is difficult to
represent.

Second, we can choose to model curves as solutions to implicit equations of
the form f{x, y, z) = 0; this method is fraught with its own perils. First, the given
equation may have more solutions than we want. For example, in modeling a cir-
cle, we might want to use x> + )’2 = 1, which is fine. But how do we model one-
half of a circle? We must add constraints such as x = 0, which cannot be contained
within the implicit equation. Furthermore, if two implicitly defined curve segments
are joined together, it may be difficult to determine whether their tangent directions
agree at their join point. Tangent continuity is critical in many applications.

These two mathematical forms do permit rapid determination of whether a
point lies on the curve or on which side of the curve the point lies, as was done in
Chapter 3. Normals to the curve are also computed easily. Hence, we shall discuss
briefly the implicit form in Section 9.4.

The parametric representation for curves, x = x(¢), y = y(¢), z = z(r), over-
comes the problems caused by functional or implicit forms and offers a variety of
other attractions that will become clear in the remainder of this chapter. Parametric
curves replace the use of geometric slopes (which may be infinite) with parametric
tangent vectors (which, we shall see, are never infinite). Here a curve is approxi-
mated by a piecewise polynomial curve instead of by the piecewise linear curve
used in Section 9.1. Each segment @ of the overall curve is given by three func-
tions, x, ¥, and z, which are cubic polynomials in the parameter ¢.
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Cubic polynomials are most often used because lower-degree polynomials
give too little flexibility in controlling the shape of the curve, and higher-degree
polynomials can introduce unwanted wiggles and also require more computation.
No lower-degree representation allows a curve segment to interpolate (pass
through) two specified endpoints with specified derivatives at each endpoint.
Given a cubic polynomial with its four coefficients, four knowns are used to solve
for the unknown coefficients. The four knowns might be the two endpoints and the
derivatives at the endpoints. Similarly, the two coefficients of a first-order
(straight-line) polynomial are determined by the two endpoints. For a straight line,
the derivatives at each end are determined by the line itself and cannot be con-
trolled independently. With quadratic (second-degree) polynomials—and hence
three coefficients—two endpoints and one other condition, such as a slope or addi-
tional point, can be specified.

Also, parametric cubics are the lowest-degree curves that are nonplanar in 3D.
You can see this fact by recognizing that a second-order polynomial’s three coeffi-
cients can be specified completely by three points and that three points define a
plane in which the polynomial lies.

Higher-degree curves require more conditions to determine the coefficients
and can wiggle back and forth in ways that are difficult to control. Despite these
complexities, higher-degree curves are used in applications—such as the design of
cars and planes—in which higher-degree derivatives must be controlled to create
surfaces that are aerodynamically efficient. In fact, the mathematical development
for parametric curves and surfaces is often given in terms of an arbitrary degree n.
In this chapter, we fix # at 3.

9.2.1 Basic Characteristics

The cubic polynomials that define a curve segment Q(r) = [x(r) y(?) z(r)]T are of
the form
x() = axr3 + bxtz +od+d,,
y() = ayr3 + .byr2 + o0+ d}.,
y=a +b+cp+d, 0<r<l (9.5)
To deal with finite segments of the curve, we restrict the parameter ¢ without

loss of generality, to the [0, 1] interval.
With T=[# # ¢ 117, and defining the matrix of coefficients of the three poly-

nomials as
a.\' b.\' Cl d.l'
C=| a, by cy, dy | (9.6)
a. b. c. d.
we can rewrite Eq. (9.5) as
Q) = [x(t) ¥ z)]"=C - T. (9.7)

This representation provides a compact way to express Eq. (9.5).
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Figure 9.7

Two joined 2D parametric curve segments and their defining polynomials. The dashed i

. n
between the (x, y) plot and the x(t) and y(t) plots show the correyspondence between the -3
points on the (x, ¥) curve and the defining cubic polynomials. The x(t) and y(f) plots for the
second segment have been translated to begin at t= 1, rather than at f = 0, to show the
continuity of the curves at their join point. ’

Figure 9.7 shows two joined parametric cubic curve segments and their poly-
nomials; it also illustrates the ability of parametrics to represent easily multiple
values of y for a single value of x with polynomials that are themselves single val-
ued. (This figure of a curve, like all others in this section, shows 2D curves repre-
sented by [x(r) y()]L)

Continuity between curve segments. The derivative of Q(f) is the parametric
tangent vector of the curve. Applying this definition to Eq. (9.7), we have

d
dt

= [Ba,? +2bi+c, 3a+2by+c,
If two curve segments join together, the curve has GV geometric continuity. If the
directions (but not necessarily the magnitudes) of the two segments’ tangent vec-
tors are equal at a join point, the curve has G! geometric continuity. In computer-
ai(lied design of objects, G continuity between curve segments often is required.
G continuity means that the geometric slopes of the segments are equal at the join
point. For two tangent vectors 7V, and TV, to have the same direction, it is neces-
sary that one be a scalar multiple of the other: TV = k - TV, with k > 0 [BARS88].

If the tangent vectors of two cubic curve segments are equal (that is, their
directions and magnitudes are equal) at the segments’ join point, the curve has
first-degree continuity in the parameter ¢, or parametric continuity, and is said to
be C! continuous. If the direction and magnitude of d "/dt "[Q(¢)] through the nth

s Tl
—Q(r)—[ax(ﬂ

o Lawl = Leormc T
Yy prng —E -T=C-[3t 2t 1 0]

3a,% +2b,t + ;)% (9.8)

y(t) Join point

5. Co

Figure 9.8

curve segment S joined to
segments Gy, Cy, and G,
with the 0, 1, and 2 degrees
of parametric continuity,
respectively. The visual
distinction between C, and
C. is slight at the join, but
obvious away from the join.

Figure 9.9

Curve segments Qy, Qu,
and Qg join at the point Py
and are identical except for
their tangent vectors at Ps.
Q; and @, have equal
tangent vectors, and hence
are both G" and C'
continuous at P,. Qy and Qg
have tangent vectors in the
same direction, but Q3 has
twice the magnitude, so
they are only G' continuous
at P,. The larger tangent
vector of Q3 means that the
curve is pulled more in the
tangent-vector direction
before heading toward P,.
Vector TV, is the tangent
vector for Q,, TV; is that for
Qs
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derivative are equal at the join point, the curve is called C " continuous. Figure 9.8
shows curves with three different degrees of continuity. Note that a parametric
curve segment is itself everywhere continuous; the continuity of concern here is at
the join points.

The tangent vector Q’(r) is the velocity of a point on the curve with respect to
the parameter #. Similarly, the second derivative of Q() is the acceleration. Sup-
pose a camera were moving along a parametric cubic curve in equal time steps and"
recording a picture after each step; the tangent vector gives the velocity of the
camera along the curve. So that jerky movements in the resulting animation
sequence are avoided, the camera velocity and acceleration at join points should be
continuous. It is this continuity of acceleration across the join point in Fig. 9.8 that
makes the C? curve continue farther to the right than the C . curve, before bending
around to the endpoint.

In general, C I continuity implies G!, but the converse is generally not true.
That is, G' continuity is generally less restrictive than is C I, so curves can be G!
but not necessarily C I' continuous. However, join points with G! continuity will
appear just as smooth as those with C ! continuity, as seen in Fig. 9.9.

The plot of a parametric curve is distinctly different from the plot of an ordi-
nary function, in which the independent variable is plotted on the x axis and the
dependent variable is plotted on the y axis. In parametric curve plots, the indepen-
dent variable 7 is never plotted at all. Thus we cannot determine, just by looking at
a parametric curve plot, the tangent vector to the curve. It is possible to determine
the direction of the vector, but not the magnitude. You can see why if you think
about it as follows: If y(f), 0 < ¢ < 1 is a parametric curve, its tangent vector at time
0is y'(0). f we let n() = y(2n), 0= = % then the parametric plots of y and » are
identical. On the other hand, n’(0) = 2 3’(0). Thus, two curves that have identical
plots can have different tangent vectors. This fact is the basis for the definition of
geometric continuity: For two curves to join smoothly, we require only that their
tangent-vector directions match; we do not require that their magnitudes match.

Relation to constraints. A curve segment Q(7) is defined by constraints on end-
points, tangent vectors, and continuity between curve segments. Each cubic poly-
nomial of Eq. (9.5) has four coefficients, so four constraints will be needed,
allowing us to formulate four equations in the four unknowns, then solving for the
unknowns. The three major types of curves discussed in this section are Hermite,
defined by two endpoints and two endpoint tangent vectors; Bézier, defined by two
endpoints and two other points that control the endpoint tangent vectors; and sev-
eral kinds of splines, each defined by four control points. The splines have C land
C? continuity at the join points and come close to their control points, but gener-
ally do not interpolate the points. The types of splines are uniform B-splines and
nonuniform B-splines.

To see how the coefficients of Eq. (9.5) can depend on four constraints, we
recall that a parametric cubic curve is defined by Q(r) = C - T. We rewrite the coef-
ficient matrix as C = G - M, where M is a 4 X 4 basis matrix, and G is a four-ele-
ment matrix of geometric constraints, called the geometry matrix. The geometric
constraints are just the conditions, such as endpoints or tangent vectors, that define
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the curve. We use G, to refer to the row vector of just the x components of the
geometry matrix. G, and G, have similar definitions. G or M, or both G and M, djf.
fer for each type of curve.

The elements of G and M are constants, so the product G - M - T is just three
cubic polynomials in ¢. Expanding the product (1) =G - M - T gives

nIyy Moy M3 Mgy i
2
mpz Mz M3y M4 4
M3 Moz M3z M43 13
Mg Moy Mag My 1

x(t)
. (9.9)

z(1)

We can read this equation in a second way: the point Q(#) is a weighted sum of the
columns of the geometry matrix G, each of which represents a point or a vector in
3-space.

Multiplying out just x(f) = G- M - T gives

2
X(I) = (I3m]l + l"mzl + tm31 + f’.’141)g1x + (5317112 + Iz.'ﬂzz + !m32 + ??142)g2.\,
3 3 2
+ (I myy+ t2m23 +tngy + m43)g3x + ([ g+ 1 Mog + tM3g + I??44)g4x. (910)

Equation (9.10) emphasizes that the curve is a weighted sum of the elements of the
geometry matrix. The weights are each cubic polynomials of ¢, and are called
blending functions. The blending functions B are given by B = M - T. Notice the
similarity to a piecewise linear approximation, for which only two geometric con-
straints (the endpoints of the line) are needed, so each curve segment is a straight
line defined by the endpoints G| and G:

X =g (1 =1+ gp, (D).
YO =81y, (1 -0 + 83, (),
2= gy (1= D+ 85, () 9.11)

Parametric cubics are really just a generalization of straight-line approximations.
The cubic curve Q(f) is a combination of the four columns of the geometry matrix,
just as a straight-line segment is a combination of two column vectors.

To see how to calculate the basis matrix M, we turn now to specific forms of
parametric cubic curves.

9.2.2 Hermite Curves

The Hermite form (named for the mathematician) of the cubic polynomial curve
segment is determined by constraints on the endpoints P; and P, and tangent vec-
tors at the endpoints Ry and Ry. (The indices 1 and 4 are used, rather than 1 and 2,
for consistency with later sections, where intermediate points P, and P3 will be
used, instead of tangent vectors, to define the curve.)

To find the Hermite basis matrix My, which relates the Hermite geometry
vector Gy to the polynomial coefficients, we write four equations, one for each of

Parametric Cubic Curves 333

the constraints, in the four unknown polynomial coefficients, and then solve for the
unknowns.
Defining Gy, the x component of the Hermite geometry matrix, as

Gu, =[P, Pi, Ry, Ryl (9.12)
and rewriting x(¢) from Eqs. (9.5) and (9.9} as

X

xO=af +bff+ct+d,=C,-T=Gy My -T=Gy -My [F £ 11T, (9.13)

Figure 9.10

The Hermite blending
functions, labeled by the
elements of the geometry
vector that they weight.

the constraints on x(0) and x(1) are found by direct substitution into Eq. (9.13) as
X(0)=Py =Gy My [00 0 1]T, (9.14)
X1)=Py =Gy My [1 1 11T (9.15)

Just as in the general case we differentiated Eq. (9.7) to find Eq. (9.8), we now dif-
ferentiate Eq. (9.13) to get x'(r) = GHA. <My [332 2t 1 0] I' Hence, the tangent-vec-
tor—constraint equations can be written as

X(O)=R| =Gy, My [0010]", (9.16)
X(1) =Ry, =Gy, -My [3 2 1 01" (9.17)
The four constraints of Egs. (9.14)—(9.17) can be rewritten in matrix form as

3
[P, Pi, Ry, Ry ]=Gu, =Gy, Mu- : (9.18)

For this equation (and the corresponding expressions for y and z) to be satisfied,
My must be the inverse of the 4 x 4 matrix in Eq. (9.18):

1

0 —3 1

3
M % 01 (9.19)
0

0 1
0 1
0 1
I 1

0

0

My can now be used in x(¢) = GH\, - My - T'to find x(7) based on the geometry vec-

tor Gy, Similarly, y(r) = GHv My Tand z(r) = Gy, - My - T, so we can write
Q0 = [x(t) ) z()]" =Gy -My - T, (9.20)

where Gy is the matrix

[P Py R R4l

Expanding the product My - T in Q(f) = Gy - My - T gives the Hermite blending
functions By as the polynomials weighting each element of the geometry matrix:

Q()=G6y My -T=Gy- By
=P8 -3+ DP + (22 +3R8P,+ (P -2F + DR+ - PRy (921)
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Figure 9.11

A Hermite curve showing the four elements of the geometry vector weighted by the blending
functions (leftmost four curves), their sum y({}, and the 2D curve itself (far right}. x(t) is
defined by a similar weighted sum.

Figure 9.10 shows the four blending functions. Notice that, at f = 0, only the func-
tion labeled P, is nonzero: only P, affects the curve at 1 = 0. As soon as f becomes
greater than zero, Ry, Py, and R4 begin to have an influence. Figure 9.11 shows the
four functions weighted by the y components of a specific geometry vector, their
sum y(f), and the curve Q(1).

Figure 9.12 shows a series of Hermite curves. The only difference among
them is the length of the tangent vector R: The directions of the tangent vectors
are fixed. The longer the vectors, the greater their effect on the curve. Figure 9.13
is another series of Hermite curves, with constant tangent-vector lengths but with
different directions. In an interactive graphics system, the endpoints and tangent
vectors of a curve are manipulated interactively by the user to shape the curve. Fig-
ure 9.14 shows one way of implementing this type of interaction.

¥(1)
4 Tangent vector
direction A, at point
P,; magnitude varies
for each curve

Tangent vector

direction R, at point

=) P,; magnitude fixed 4
1 for each curve

Figure 9.12

Family of Hermite parametric cubic curves. Only R, the tangent vector at P,, varies for each
curve, increasing in magnitude for the higher curves.
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¥(t)

= x(1)

Figure 9.13

Family of Hermite parametric cubic curves. Only the direction of the tangent vector at the left
starting point varies; all tangent vectors have the same magnitude. A smaller magnitude
would eliminate the loop in the one curve.

Drawing parametric curves. Hermite and other similar parametric cubic curves
are simple to display: We evaluate Eq. (9.5) at n successive values of 7 separated by
a step size §. Program 9.1 gives the code. The evaluation within the { ... } in the for
loop takes 12 multiplies and 10 additions per 3D point. Use of Horner’s rule for
factoring polynomials,

f=af® + b* + ct +d = ((at + b)t + )t + d, (9.22)

would reduce the effort slightly to 10 multiplies and 10 additions per 3D point.

Figure 9.14

Two Hermite cubic curve segments displayed with controls to facilitate interactive
manipulation. The user can reposition the endpoints by dragging the dots, and can change the
tangent vectors by dragging the arrowheads. The tangent vectors at the join point are
constrained to be collinear (to provide C' continuity): The user is usually given a command to
enforce C° C', G', or no continuity. The tangent vectors at the t= 1 end of each curve are
drawn in the reverse of the direction used in the mathematical formulation of the Hermite
curve, for clarity and for more convenient user interaction.
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More efficient ways to display these curves involve forward-difference techniques,
as discussed in [FOLE90].

Program 9.1 typedef float CoefficientArray[4];
void DrawCurve(CoefficientArray cx, CoefficientArray cy,
Program to display a cubic CoefficientArray cz, int n)
paramelric oume; /* ¢ex, ¢y, and cz are coefficients for x(t), y(t), and z(t) */
eg., Cy= G M, etc. */
/*n, number of steps */

float x,y, z, delta, t, 2, {3;
int i

MoveAbs3( cx[3], cy[3], cz[3] );

delta=1.0/n;

for(i=1;i<=n;i+4) {
t=i"*delta;
f2=1"t;
t3=t2*t;
X =cx[0] *t3 + cx[1] * t2 + cx[2] * t + cx[3];
y =cy[0] * 13 + cy[1] * 12 + cy[2] * t + cy[3];
z=cz[0] *13 + cz[1] * 12 + cz[2] * t + cZ[3];
DrawAbs3( x, y, 2 );

}

)

Because the cubic curves are linear combinations (weighted sums) of the four
elements of the geometry vector, as seen in Eq. (9.10), we can transform the curves
by transforming the geometry vector and then using it to generate the transformed
curve, which is equivalent to saying that the curves are invariant under rotation,
scaling, and translation. This strategy is more efficient than is generating the curve
as a series of short line segments and then transforming each individual line. The
curves are not invariant under perspective projection, as will be discussed in Sec-
tion 9.2.6.

9.2.3 Bézier Curves

The Bézier [BEZI70; BEZI74] form of the cubic polynomial curve segment,
named after Pierre Bézier who developed them for use in designing automobiles at
Rénault, indirectly specifies the endpoint tangent vector by specifying two inter-
mediate points that are not on the curve; see Fig. 9.15. The starting and ending tan-
gent vectors are determined by the vectors P| P, and P;P, and are related to Ry and
R4 by

R =0(0)=3(P,— Py), Ry=Q(1)=3(P4— P3). (9.23)

The Bézier curve interpolates the two end control points and approximates the
other two. See Exercise 9.9 to understand why the constant 3 is used in Eq. (9.23).
The Bézier geometry matrix Gg, consisting of four points, is
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Figure 9.15 Two Bézier curves and their control points. Notice that the convex hulls (the convex polygon
formed by the cantrol points), shown as dashed lines, do not need to touch all four control
points.

Gp=[P1 P P P4 (9.24)

Then, the matrix Mg that defines the relation Gy = Gy - My between the Her-
mite geometry matrix Gy and the Bézier geometry matrix Gp is just the 4 x 4
matrix in the following equation, which rewrites Eq. (9.24) in matrix form:

1 0 -3 0

0 0 3 0 5
Gu=[P1 P4 Ry Ryl =[P1 Pr P3 P4] 00 0 -3 = Gg Myg- (9.25)

0 1 0 3

To find the Bézier basis matrix My, we use Eq. (9.20) for the Hermite form, sub-
stitute Gy = Gg - Myg, and define Mg = Myg - My:

Q(I) = GH'MH'T: (GB'MHB)'MH'T= GB'(MHB'MH)' T= GBMBT (926)

Carrying out the multiplication Mg = Myg- My gives

—1 & - 1
3 -6 3 0
— M = 9.27
Mg = Myg - My o w w o (9:27)
1 0 0 0
and the product Q(f) = Gg-Mg-T is
0@ = (1 = 6°Py + 361 - 2P, + 321 — HP;3 + PP, (9.28)

The four polynomials Bg = Mg-T, which are the weights in Eq. (9.28), are called
the Bernstein polynomials, and are shown in Fig. 9.16.

Joining of curve segments. Figure 9.17 shows two Bézier curve segments with
a common endpoint. & continuity is provided at the endpoint when P; — P4 = k(P4
— Ps), k> 0. That is, the three points P3, P4, and P5 must be distinct and collinear.
In the more restrictive case when k = 1, there is C ' continuity in addition to G !
continuity.

- T =
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If we refer to the polynomials of two curve segments as x (for the left seg-
ment) and x" (for the right segment), we can find the conditions for C 0 and ¢! con-
tinuity at their join point:

A =20, o = 4o .
v(1) =x'(0) d{x(l) dr.t(O) (9.29)

Working with the x component of Eq. (9.29), we have
d

d ‘
(1) = 27(0) = Py, 2 (1) = 3(Py ~P3), 723"(0) = 3(Ps ~P,). (930)

Figure 9.16

The Bernstein polynomials,
which are the weighting
functions for Bézier curves.
At t=0, only By, is nonzero,
so the curve interpolates
Py, similarly, at t= 1, only
B,34 is nonzero, and the
curve interpolates P;.

As always, the same conditions are true of y and z. Thus, we have C and ¢! conti-
nuity when Py — P; = P5 — Py, as expected.

Importance of the convex hull. Examining the four Bg polynomials in Eq.
(9.28) and Fig. 9.16, we note that their sum is everywhere unity and that each poly-
nomial is everywhere nonnegative for 0 < ¢ < 1. Thus, Q(?) is just a weighted aver-
age of the four control points. This condition means that each curve segment,
which is just the sum of four control points weighted by the polynomials, is com-
pletely contained in the convex hull of the four control points. The convex hull for
2D curves is the convex polygon formed by the four control points: Think of it ag
the polygon that you would form by putting a rubberband around the points (Fig,
9.15). For 3D curves, the convex hull is the convex polyhedron formed by the con-
trol points: Think of it as the polyhedron you would form by stretching a rubber
sheet around the four points.

This convex-hull property holds for all cubics defined by weighted sums of
control points if the blending functions are nonnegative and sum to one. In general,
the weighted average of n points falls within the convex hull of the 7 points; this
can be seen intuitively for n = 2 and n = 3, and the generalization follows. Another
consequence of the fact that the four polynomials sum to unity is that we can find
the value of the fourth polynomial for any value of ¢ by subtracting the first three
from unity—a fact that can be used to reduce computation time.

The convex-hull property is also useful for clipping curve segments: Rather
than clip each short line piece of a curve segment to determine its visibility,
we first apply a polygenal clip algorithm, for example, the Sutherland—Hodgman

Figure 9.17  Two Bézier curves joined at P,. Points Py, P,, and P are collinear.

Example 9.2

Interactive Bézier curve
program.
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algorithm discussed in Chapter 3—to clip the convex hull or its extent against the
clip region. If the convex hull (extent) is completely within the clip region, so is
the entire curve segment. If the convex hull (extent) is completely outside the clip
region, so is the curve segment. Only if the convex hull (extent) intersects the clip
region does the curve segment itself need to be examined.

Problem: Write a program, using SRGP, that allows a user to specify the four
control points for a 2D Bézier curve and then draws the curve using the approach
of Prog. 9.1. You should provide a way of specifying an arbitrary number of Bézier
curves, clearing the SRGP window, and terminating the program.

Answer: We implement the DrawCurve function by using Eq. (9.28), which
relates the curve Q(¢) to the four control points. In general, this implementation
sacrifices efficiency for clarity. We do, however, use the SRGP_polyLine function,
which is the most efficient way to draw the curve. The rest of the implementation
follows the model of Prog. 9.1.

We have arbitrarily specified the window size and number of steps used to
approximate the curve as 400 and 20, respectively. There are many possible ways
to implement the interactive part of the program; we have elected to use a combi-
nation of locator and keyboard devices. The right locator button is used to specify
the beginning of a new sequence of control points, whereas the left button is used
to define the remaining three points. A rubber line echo helps to guide the layout of
the points. The Bézier curve is drawn as soon as the last point is entered.

Finally, the window is cleared when the user presses the “c” key; pressing the
“q” key terminates the program. A typical set of curves produced by the program is
shown in the accompanying figure,

#include "srgp.h"
#include <stdio.h>

#define KEYMEASURE_SIZE 80
#define WINDOW_SIZE 400
#define NUM_STEPS 20

void DrawCurve(point *ControlPoints, int n)
{

int i

float t, delta;

point CurvePoints[n];

CurvePoints[0].x = ControlPoints[0].x; /* Bézier curves interpolate the first */
CurvePoints[0].y = ControlPoints[0].y; /* and last control points */
delta=1.0/n; /* The curve is to be approximated by n points */
/* t ranges from 0.0t0 1.0 */
for {i=1;i<=n;i++) {
t=1"delta;
CurvePointsi].x = ControlPoints[0}.x * (1.0 —1) * (1.0 —1) * (1.0 — 1)

]
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+ ControlPoints[1]x * 3.0 *t * (1.0 -
+ ControlPoints[2].x 3.0 *t*t* (1.0
+ ControlPoints[3]x *t *t* t;

*(1.0-1)
~f)

CurvePaints[il.y = ControlPoints[0l.y * (1.0 —t) * (1.0—1t) * (1.0 — 1)

+ ControlPoints[1].y *3.0 *t* (1.0 1) * (1.0 - 1)
+ ControlPoints[2].y *3.0 "t "t * (1.0 - 1)
+ ControlPoints[3].y *t *t * t;

SRGP_polyLine(n + 1, CurvePoints); /* Draw the complete curve */

Bezier Curves

main()

locator_measure locMeasure, pastiocMeasure;
char keyMeasure[KEYMEASURE_SIZE];
int  device;

int  numCtl;

boolean terminate;

rectangle screen;

point ControlPoints[4];

Typical out-
put from the
Bézier curve
program.

SRGP_begin("Bezier Curves", WINDOW_SIZE, WINDOW_SIZE, 1, FALSE);

SRGP_setlLocatorEchoType(CURSOR);

SRGP_setLocatorButtonMask(LEFT_BUTTON_MASK|RIGHT BUTTON_MASK);

pastlocMeasure.position = SRGP_defPoint(—1, —1);
SRGP_setlLocatorMeasure(pastlocMeasure.position);
SRGP_setKeyboardProcessingMode(RAW);
SRGP_setinputMode(LOCATOR, EVENT); I

/* Initialize position to */
/* arbitrary location */

Both locator (mouse) */
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SRGP_setinputMode(KEYBOARD, EVENT); /* and keyboard are active */
screen = SRGP_defRectangle(0, 0, WINDOW_SIZE — 1, WINDOW_SIZE - 1);

/* Main event loop */
terminate = FALSE;
do{
device = SRGP_waitEvent(INDEFINITE);
switch (device) {
case KEYBOARD:{
SRGP_getKeyboard(keyMeasure, KEYMEASURE_SIZE);
switch (keyMeasure[0]) {

case'q: * Quitting the program */
terminate = TRUE;
break;

case 'c" /* Clearing the window */

SRGP_setColor(0);
SRGP-_fillRectangle(screen);
SRGP_setColor(1);
break;
}
break;
} /* keyboard case */
case LOCATOR:{
SRGP_getLocator(&locMeasure);
switch (locMeasure buttonOfMostRecentTransition) {
case LEFT_BUTTON: {* Defining remaining control points */
if ((locMeasure.buttonChord[LEFT_BUTTON] == DOWN) &&
pastlocMeasure.position.x > 0) {
SRGP_setLocatorEchoRubberAnchor(lochMeasure.position);
SRGP_line(pastlocMeasure.position, locMeasure.position);
pastlocMeasure = locMeasure;
ControlPoints[numCtl] = locMeasure.position;
numCtl++;
if (numCtl == 4) {
SRGP_setLineStyle(CONTINUOUS); /* To draw curve */
SRGP_setLineWidth(2);
DrawCurve(ControlPoints, NUM_STEPS);
pastlocMeasure.position.x = —1;
SRGP_setLocatorEchoType(CURSOR);
}
break;
case RIGHT _BUTTON: /* Start new set of control points */
SRGP_setlLocatorEchoRubberAnchor({locMeasure.position);
pastlocMeasure = locMeasure;
SRGP_setlLacatorEchoType(RUBBER_LINE);
SRGP_setLineStyle(DASHED); /" To draw control polygon */
SRGP_setLineWidth(1);
ControlPoints[0] = locMeasure.position;
numCtl = 1;
break;
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}
} /* button handiing */
} /* locator case */
/* device switch */
} while (lterminate);
SRGP_end();
}

9.2.4 Uniform Nonrational B-Splines

The term spline goes back to the long flexible strips of metal used by draftsmen to
lay out the surfaces of airplanes, cars, and ships. “Ducks,” which are weights
attached to the splines, were used to pull the spline in various directions. The meta]
splines, unless severely stressed, had second-order continuity. The mathematica]
equivalent of these strips, the natural cubic spline, is a ¢ ¢!, and C? continuous
cubic polynomial that interpolates (passes through) the control points. This poly-
nomial has one more degree of continuity than is inherent in the Hermite and Béz-
ier forms. Thus, splines are inherently smoother than are the previous forms.

The polynomial coefficients for natural cubic splines, however, are dependent
on all n control points; their calculation involves inverting an n + 1 by 7 + 1 matrix
[BARTS87]. This characteristic has two disadvantages: moving any one control
point affects the entire curve, and the computation time needed to invert the matrix
can interfere with rapid interactive reshaping of a curve.

B-splines, discussed in this section, consist of curve segments whose polyno-
mial coefficients depend on just a few control points. This behavior is called local
control. Thus, moving a control point affects only a small part of a curve. In addi-
tion, the time needed to compute the coefficients is greatly reduced. B-splines have
the same continuity as do natural splines, but do not interpolate their control
points.

In the following discussion, we change our notation slightly, since we must
discuss an entire curve consisting of several curve segments, rather than its indi-
vidual segments. A curve segment does not need to pass through its control points,
and the two continuity conditions on a segment come from the adjacent segments.
This behavior results from sharing control points between segments, so it is best to
describe the process in terms of all the segments at once.

Cubic B-splines approximate a series of m + 1 control points Py, Py,... P, m
>3, with a curve consisting of m — 2 cubic polynomial curve segments Q3, Qs+
Q,,. Although such cubic curves might be defined each on its own domain 0 <
1, we can adjust the parameter (making a substitution of the form ¢ =t + k) such
that the parameter domains for the various curve segments are sequential. Thus,
we say that the parameter range on which Q; is defined is ; <t < t;,y, for 3 < ism.
In the particular case of m = 3, there is a single curve segment Q5 that is defined on
the interval #3 <t < t4 by four control points, Py to Ps.

For each i > 4, there is a join point or knot between Q;_; and Q; at the param-
eter value 7;; the parameter value at such a point is called a knot value. The initial
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y(t)

@ Knot

€ Control point

= X(1)

Figure 9.18 A B-spline with curve segments Qg through Q. This figure and many others in this chapter

were created with a program written by Carles Castellsaqué.

and final points at 73 and ¢,,,; are also called knots, so there are a total of m — 1
knots. Figure 9.18 shows a 2D B-spline curve with its knots marked. A closed
B-spline curve is easy to create: The control points Py, P, P, are repeated at the
end of the sequence—Py, Py,..., P,,, Po, Py, Ps.

The term uniform means that the knots are spaced at equal intervals of the
parameter . Without loss of generality, we can assume that t; = 0, and the interval
tiy1 — t; = 1. Nonuniform nonrational B-splines, which permit unequal spacing
between the knots, are discussed in Section 9.2.5. (In fact, the concept of knots is
introduced in this section to set the stage for nonuniform splines.) The term non-
rational is used to distinguish these splines from rational cubic polynomial curves,
discussed in Section 9.2.6, where x(f), ¥(#), and z(f) are each defined as the ratio of
two cubic polynomials. The “B” stands for basis, since the splines can be repre-
sented as weighted sums of polynomial basis functions, in contrast to the natural
splines, for which the weighted-sum property is not true.

Each of the m — 2 curve segments of a B-spline curve is defined by four of the
m + 1 control points. In particular, curve segment Q; is defined by points P;_3,
Pi_2. Pi_y, and P;. Thus, the B-spline geometry matrix Gp, for segment Q) is

GBs,- = [P,'_3 Pf_z P,‘_l P,‘] B 3<i<m. (931)

The first curve segment, O3, is defined by the points P through P53 over the
parameter range t3 = 0 to 14 = 1, Q4 is defined by the points P; through P, over the
parameter range fy = 1 to f5 = 2, and the last curve segment, @, is defined by the
points P, _4, P, 5, P,_q, and P, over the parameter range £, = m— 3 to t,,, =
m—2. In general, curve segment (J; begins somewhere near point P; » and ends
somewhere near point P;_;. We shall see that the B-spline blending functions are
everywhere nonnegative and sum to unity, so the curve segment Q; is constrained
to the convex hull of its four control points.




344

Representation of Curves and Surfaces

¥t
A P, P",Curve
P
P’,Curve
Py
P, Curve
Pg
/ _
!
PO :'Oa A\
Gy
i P‘ 6
$P, 5% R ® Knot
€ Control point
+ x(f)

Figure 9.19

A B-spline with control point P, in several different locations.

Just as each curve segment is defined by four control points, each control
point (except for those at the beginning and end of the sequence Py, Py, ..., P,)
influences four curve segments. Moving a control point in a given direction moves
the four curve segments it affects in the same direction; the other curve segments
are totally unaffected (see Fig. 9.19). This behavior is the local control property of
B-splines and of all the other splines discussed in this chapter.

If we define T; as the column vector [(f — z,)3 (r— 1,-)2 (r—1) 11", then the
B-spline formulation for curve segment i is

Qt)=Gps Myy + T;, 4;51< 1, 9.32)

We generate the entire curve by applying Eq. (9.32) for 3 <i <m.
The B-spline basis matrix, Mp,, relates the geometrical constraints Gg, to the
blending functions and the polynomial coefficients:

1 B -~
1| 3 -6 3
6|l -3 0 3

I 4 1

M= (9.33)

[ e e T

This matrix is derived in [BART87].

The B-spline blending functions By, are given by the product Mg, - T}, analo-
gously to the previous Bézier and Hermite formulations. Note that the blending
functions for each curve segment are exactly the same, because, for each segment
i, the values of r —#; range from O at r = 1;to 1 at ¢ = 1;, . If we replace 1 — 1; by &,
and replace the interval [z, t;, ;] by [0, 1], we have
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T
MBS'Tz[BBs—3 Bps.y BBS—] BBSO]

t
5
[

2 #8351 BF 6244 B3P 431 T

=[1-9% 37-62+4 3P +37+3+1 I, 0<r<1. (9.34)

=

Figure 9.20 shows the B-spline blending functions Bp. Because the four functions
sum to | and are nonnegative, the convex-hull property holds for each curve seg-
ment of a B-spline. See [BART87] to understand the relation between these blend-
ing functions and the Bernstein polynomial basis functions.

Expanding Eq. (9.32), again replacing ¢ — #; with ¢ at the second equal-to sign,
we have

Qit—1;) = Ggg;- My, - T; = Gpg,- Mg - T

@ = ol ol e ol oo

= Ggy; - Bg=Pi3 - Bps 3+ Py - Bpy 5+ Piy - Bps | + P;- Bpg

! 1—1)° 3P — 612+ 4 =33 432 L3 41
Figure 9.20 _ ile=y - T piktls et i
The four B-spline blending 6 6 6
: 3
functions from Eq. (9.34). At & r Pi, Qi 1. ©9.35)

t=0and =1, just three of 6
i etions Senonzero. It is easy to show that Q; and Q;,; are C°, C', and C? continuous where they
join. The additional continuity afforded by B-splines is attractive, but it comes at
the cost of less control of where the curve goes. We can force the curve to interpo-
late specific points by replicating control points; this is useful both at endpoints
and at intermediate points on the curve. For instance, if P; » = P; ,, the curve is
pulled closer to this point because curve segment Q, is defined by just three differ-
ent points, and the point P;_» = P, | is weighted twice in Eq. (9.35)—once by
Bg,_, and once by Bg_,.
If a control point is used three times—for instance, if P,_» = P;_| = P;—then
Eqg. (9.35) becomes

Qi‘(f) = Pl,‘_:z) g BBS—3 G g Pf ' (BBS—Z + BBS—I $ BBS(})' (936)

Q; is clearly a straight line. Furthermore, the point P;_; is interpolated by the
line at ¢ = 1, where the three weights applied to P; sum to 1, but ;_3 is not in gen-
eral interpolated at 1 = 0. Another way to think of this behavior is that the convex
hull for Q; is now defined by just two distinct points, so @, has to be a line. Figure
9.21 shows the effect of multiple control points at the interior of a B-spline.

Another technique for interpolating endpoints, phantom vertices, is dis-
cussed in [BARS83; BART87]. We shall see in the next section that, with nonuni-
form B-splines, endpoints and internal points can be interpolated in a more natural
way than they can with the uniform B-splines.

9.2.5 Nonuniform, Nonrational B-Splines

Nonuniform, nonrational B-splines differ from the uniform, nonrational B-
splines discussed in Section 9.2.4 in that the parameter interval between successive
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Q, Convex hull ———
Q, Convex hull ————

PO
QB QA
P =F,=P,

Figure 9.21

The effect of multiple control points on a uniform B-spline curve. In (a), there are no multiple
control points. The convex hulls of the two curves overlap; the join point between Q; and Qs
in the region shared by both convex hulls. In (b), there is a double control point, so the two
convex hulls share edge P,P;; the join point is therefore constrained to lie on this edge. In (),
there is a triple control point, and the two convex hulls are straight lines that share the triple
point; hence, the join point is also at the triple point. Because the convex hulls are straight
lines, the two curve segments must also be straight lines. There is C? but only G continuity at
the join.

knot values is not necessarily uniform. The nonuniform knot-value sequence
means that the blending functions are no longer the same for each interval, but
rather vary from curve segment to curve segment.

These curves have several advantages over uniform B-splines. First, continu-
ity at selected join points can be reduced from C? to C' to C? to none. If the conti-
nuity is reduced to C, then the curve interpolates a control point, but without the
undesirable effect of uniform B-splines, where the curve segments on either side of
the interpolated control point are straight lines. Also, starting and ending points
can be easily interpolated exactly, without at the same time introducing linear seg-
ments. As is discussed in [FOLE90], it is possible to add an additional knot and
control point to nonuniform B-splines, so the resulting curve can be easily
reshaped, whereas this modification cannot be done with uniform B-splines.

The increased generality of nonuniform B-splines requires a notation slightly
different from that used for uniform B-splines. As before, the spline is a piecewise
continuous curve made up of cubic polynomials, approximating the control points
P through P,,. The knot-value sequence is a nondecreasing sequence of knot val-
ues f through #,,, 4 (that is, there are four more knots than there are control points).
Because the smallest number of control points is four, the smallest knot sequence
has eight knot values and the curve is defined over the parameter interval
from t5 to ty.

Parametric Cubic Curves 347

The only restriction on the knot sequence is that it be nondecreasing, which
allows successive knot values to be equal. When this occurs, the parameter valye js
called a multiple knot and the number of identical parameter values is called the
multiplicity of the knot (a single unique knot has multiplicity of 1). For instance,
in the knot sequence (0,0.0,0,1,1,2,3,4, 4,5, 5, 5, 5), the knot value 0 has mul-
tiplicity 4; value 1 has multiplicity 2; values 2 and 3 have multiplicity 1: valye 4
has multiplicity 2; and value 5 has multiplicity 4.

Curve segment Q; is defined by control points P;_3, P,_,, Pi 1, P; and by
blending functions B;_3 4(r), Bi_p 4(t), Bi_; 4(1), B; 4(1), as the weighted sum

Q) =Pi3 Bi34(0) + Piy - Biog®)+ Py Biy4(t) + P By 4(t)
3<igm, <1<ty (9.37)

The curve is not defined outside the interval 73 through tmsr- When t; = o1 (2 mul-
tiple knot), curve segment Q; is a single point. It is this notion of a curve segment
reducing to a point that provides the extra flexibility of nonuniform B-splines.

There is no single set of blending functions, as there was for other types of
splines. The functions depend on the intervals between knot values and are defined
recursively in terms of lower-order blending functions. B; 1) 1s the jth-order
blending function for weighting control point P;. Because we are working with
fourth-order (that is, third-degree, or cubic) B-splines, the recursive definition ends
with B; 4(#) and can be presented easily in its “unwound” form. The recurrence for
cubic B-splines is

1, i £t <4

Bi.i(2) : 0, otherwise,

r—1 tiyz — 1
Bi2(t) = 4_’_'BJ.I(I) + _i-__Bfil‘l(r)’
tiy1 — & lit2 — Liqy

r—1 tiyz —t
B,‘_3(f) = ——_lBi,l(I) + _Jr—%‘——BH_]_j(f),

i+2 — ki lit3 = liq)
=1 tiyqg — 1t
Bist)= ——Bi3(t) + ———— B;.13(1)- (9.38)
Ligs — 1 liva — L1

It can be shown that the blending functions are nonnegative and sum tq one,
so nonuniform B-spline curve segments lie within the convex hulls of their foyr
control points. For knots of multiplicity greater than one, the denominators can be
zero because successive knot values can be equal: Division by zero is defined to
yield zero.

Increasing knot multiplicity has two effects. First, the spline, evaluated at any
known knot value ¢;, will automatically yield a point within the convex hull of the
points P;_3, P;_», and P,_y. If t; and #;,, are equal, they must lie in the convex hy]
of P;_3, P;_», and P;_|, and in the convex hull of P, ,, P;_;, and P;. Thus, they must
actually lie on the line segment between P;_; and P;_;. In the same way, if t =
1;+] = t;yo. then this knot must lie ar P;_y. If t; = ;. = 1,5 = 1;, 5, then the knot muyst
lie both at P;_; and at P;—the curve becomes broken. Second, the multiple knots
will reduce parametric continuity: from C? o C continuity for one extra knot
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(multiplicity 2); from C Lo C0 continuity for two extra knots (multiplicity 3): from
C° to no continuity for three extra knots (multiplicity 4).

Interactive creation of nonuniform splines typically involves pointing at cop.
trol points, with multiple control points indicated simply by successive selection of
the same point. Another way is to point directly at the curve with a multibuttop
mouse: A double click on one button can indicate a double control point; a doupje
click on another button can indicate a double knot.

9.2.6 Nonuniform, Rational Cubic Polynomial Curve Segments

General rational cubic curve segments are ratios of polynomials:
X (1) Y (1) Z(1)
sy MBE =y BB =,
W (1) W (1) W (1)

where X(7), Y(¢), Z(¢), and W(r) are all cubic polynomial curves whose contro]
points are defined in homogeneous coordinates. We can also think of the curve ag
existing in homogeneous space as Q(f) = [X(r) Y(©) Z( W(r)]T. As always,
moving from homogeneous space to 3-space involves dividing by W(r). We can
transform any nonrational curve to a rational curve by adding W(¢) = 1 as a fourth
element. In general, the polynomials in a rational curve can be Bézier, Hermite, or
any other type. When they are B-splines, we have nonuniform rational B-splines,
sometimes called NURBS [FORRS80].

Rational curves are useful for two reasons. The first and most important rea-
son is that they are invariant under rotation, scaling, translation, and perspective
transformations of the control points (nonrational curves are invariant under only
rotation, scaling, and translation). Thus, the perspective transformation needs to be
applied to only the control points, which can then be used to generate the perspec-
tive transformation of the original curve. The alternative to converting a nonra-
tional curve to a rational curve prior to a perspective transformation is first to
generate points on the curve itself, and then to apply the perspective transforma-
tion to each point—a far less efficient process. An analogous observation is that
the perspective transformation of a sphere is not the same as a sphere whose center
and radius are the transformed center and radius of the original sphere.

A second advantage of rational splines is that, unlike nonrationals, they can
define precisely any of the conic sections. We can only approximate a conic with
nonrationals, by using many control points close to the conic. This second property
is useful in those applications, particularly CAD, where general curves and sur-
faces as well as conics are needed. Both types of entities can be defined with
NURBS.

For further discussion of conics and NURBS, see [FAUX79; BOHMS4;
TILLE3].

x(2) = (9.39)

9.2.7 Fitting Curves to Digitized Points

An engineer or artist often has a nonelectronic representation of a complex shape
that can be digitized as a series of discrete points. For example, a paper hardcopy
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of a shape may be all that is available. For additional manipulation of the shape we
might like to fit a smooth curve or series of curves to the (usually) imprecise
digitized representation. Various curve-fitting techniques have been published; all
have various advantages and disadvantages. Schneider [SCHN90] has developed a
method for approximating digitized curves with piecewise Bézier segments.
Advantages over previous approaches are geometric continuity, stability, and ease
of implementation. A complete C implementation of the algorithm is available in
[SCHN90]. Figure 9.22 shows an example of the method applied to a digitized
shape.

9.2.8 Comparison of the Cubic Curves

The different types of parametric cubic curves can be compared by several differ-
ent criteria, such as ease of interactive manipulation, degree of continuity at join
points, generality, and speed of various computations using the representations. Of
course, it is not necessary to choose a single representation, since it is possible to
convert among all representations, as discussed in [FOLE90]. For instance, non-
uniform rational B-splines can be used as an internal representation, while the user
might interactively manipulate Bézier control points or Hermite control points and
tangent vectors. Some interactive graphics editors provide the user with Hermite
curves while representing them internally in the Bézier form supported by Post-
Script [ADOBSS5]. In general, the user of an interactive CAD system may be given
several choices, such as Hermite, Bézier, uniform B-splines, and nonuniform
B-splines. The nonuniform rational B-spline representation is likely to be used
internally, because it is the most general.

Table 9.1 compares most of the curve forms mentioned in this section. Ease of
interactive manipulation is not included explicitly in the table, because that
attribute is quite application specific. Number of parameters controlling a curve

Figure 9.22 A digitized character, showing the original sample, the fitted curves, and the Bézier control
points. (Courtesy of Academic Press, Inc.)
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Table 9.1
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Comparison of Four Different Forms of Parametric Cubic Curves

Uniform Nonuniform

Hermite Bézier B-Spline  B-spline
Convex hull N/A Yes Yes Yes
defined by
control points
Interpolates Yes Yes No No
some control
points
Interpolates all ~ Yes No No No
control points
Ease of Good Best Average High
subdivision
Continuities 2 gl 05, e
inherent in G° G0 G? G?
representation
Continuities o 3 e 5%
achieved easily G G! G** G2*
Number of 4 4 4 5
parameters
controlling acurve
segment

*Except for special case discussed in Section 9.2.

segment is the four geometrical constraints plus other parameters, such as knot
spacing for nonuniform splines. Continuity achieved easily refers to constraints
such as forcing control points to be collinear to allow G continuity. Because C"
continuity is more restrictive than is G”, any form that can attain C" can by defini-
tion also attain at least G".

When only geometric continuity is required, as is often the case for CAD, the
choice is narrowed to the various types of splines, all of which can achieve both G
and G° continuity. Of the three types of splines in the table, uniform B-splines are
the most limiting. The possibility of multiple knots afforded by nonuniform
B-splines gives more shape control to the user. Of course, a good user interface
that allows the user to exploit this power easily is important.

It is customary to provide the user with the ability to drag control points or
tangent vectors interactively, continually displaying the updated spline. Figure
9.19 shows such a sequence for B-splines. One of the disadvantages of B-splines
in some applications is that the control points are not on the spline itself. It is
possible, however, not to display the control points, allowing the user instead to
interact with the knots (which must be marked so they can be selected).

ARAMETRIC BICUBIC SURFACES
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Parametric bicubic surfaces are a generalization of parametric cubic curves. Recall
the general form of the parametric cubic curve O(f) = G - M - T, where G, the
geometry matrix, is a constant. First, for notational convenience, we replace ¢ with
s, giving Q(s) = G - M - §. If we now allow the points in G to vary in 3D along
some path that is parameterized on ¢, we have

Q@s, 1) =[G1(1) Ga(r) G3(t) Ga()]- M-S . (9.40)

Now, for a fixed f;, Q(s, t;) is a curve because ((f1) is constant. Allowing f to
take on some new value—say, f,—where 1, — £1 is very small, Q(s, f) is a slightly
different curve. By repeating this process for arbitrarily many other values of f,
between 0 and 1, we define an entire family of curves, each member arbitrarily
close to another curve. The set of all such curves defines a surface. If the G (1) are
themselves cubics, the surface is said to be a parametric bicubic surface.

Continuing with the case that the G,(r) are cubics, each can be represented as
Gi(ty=G;-M-T, where G; = |g;| 8> 83 8isl (the G and g are used to distinguish
from the G used for the curve). Hence, g;; is the first element of the geometry
matrix for curve G(f), and so on.

Now let us transpose the equation G,(r) = G; - M - T, using the identity
A-B-OF = ¢ . BT . AT The result is G = T - MT - G =
T MT. lgi1 &» 8i gi4]T. If we now substitute this result in Eq. (9.40) for each
of the four points, we have

g1 &1 &1 &4

O, = BT - T | 512 5% BB ER | 4y 6. (9.41)
813 823 833 843

g14 824 834 84
or
06, H=TL.MY-G-M-S, 0<s,t<1. (9.42)
Written separately for each of x, y, and z, the form is
x(s, =T -M".G, M-8,
ys,H=T" -M'- G, M-S,
W, 0=T"-M' -G, M-S. (9.43)

Given this general form, we now move on to examine specific ways to specify sur-
faces using different geometry matrices.

9.3.1 Hermite Surfaces

Hermite surfaces are completely defined by a 4 x 4 geometry matrix Gy. Deriva-
tion of Gy; follows the same approach that we used to find Eq. (9.42). We further
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elaborate the derivation here, applying it just to x(s, #). First, we replace tby s in
Eq. (9.13), to get x(s) = Gy, - My - S. Rewriting this expression further such thay
the Hermite geometry matrix GHX is not constant, but is rather a function of f, we
obtain 4

(5. 0) = Gu, (1) - My - S = [P, (1) Py (t) R, (1) R ()] M-S . (9.4

The functions Pl_\-(f) and P4 (7) define the x components of the starting ang
ending points for the curve in parameter s. Similarly, R (1) and Ry (1) are the tap.
gent vectors at these points. For any specific value of ¢, there are two specific eng.
points and tangent vectors. Figure 9.23 shows P(¥), P4(¢), and the cubic in s that is
defined when ¢t = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. The surface patch is essentially 5
cubic interpolation between P(f) = Q(0, 1) and P4(¢) = O(1, 1) or, altemativaly_
Figure 9.23 between (s, 0) and Q(s, 1).

Lines of constant parameter In the special case that the four interpolants Q(0, 1), Q(1, 1), O(s, 0), and
values onabicubicsurface: (s, 1) are straight lines, the result is a ruled surface. If the interpolants are also
Pt)isats=0and Py(1) is coplanar, then the surface is a four-sided planar polygon.

ats=1. .. . g K
Continuing with the derivation, let each of Py (1), P4, (1), Ry (1), and Ry (1) be Figure 9.24  Sixteen control points for a Bézier bicubic patch. .
represented in Hermite form as

Pr@) =1lgu 812 813 uale Mu-T . P (1) =g 82 &3 82alx My T, The Hermite bicubic permits C! and G' continuity from one patch to the next

. . . . 1 1 G

: S > ; d G continuity from one
RLOO =[5 g2 &5 gdle-Mu-T, Ri()= g 2 gis Baale - My T in much the same way the Hermite cubic permits C* an y
! : S N - Ba1 8uz 8us gl . curve segment to the next. Details can be found in Chapter 11 of [FOLES0].

(9.45)
These four cubics can be rewritten together as a single equation:
_ 9.3.2 Bézier Surfaces
[P, (1) Ps,(1) Ry () Ry, ()" =Gy -My-T, (9.46)
b The Bézier bicubic formulation can be derived in exactly the same way as the Her-
TP mite cubic. The results are
g1 g1z 813 8u
Gy — | 821 82 8z 8u | (9.47) X, 0)=T"-Mp"-Gy_- Mg -5,
’ g1 g &n Lu T T
841 812 8u 8 |, s, )=T"-Mg -Gg -Mg-S, (9.51) |
Transposing both sides of Eq. (9.46) results in (s, =T"- MBT -Gp_-Mpg-S. |
) |
g 81 gun 8 The Bézier geometry matrix & consists of 16 control points, as shown in Fig. \
[PL(1) Py(t) Ri(t) Ry ()] = TT. Mill-' g1z 82 £3» 84 =T, M£ 'GHI (9.48) 924 Bézier surf-aces are ?Ltractive in in.ter‘af:tive design for the san?e. reason as
g1 8x g3 £ Bézier curves are: Some of the control points interpolate the surface, giving conve-
814 &1 8u gu |, nient precise control, whereas tangent vectors also can be controlled explicitly.
Substituting Eq. (9.48) into Eq. (9.44) yields When BE':ZIEI’ sur_fuces are used as an internal representation, their convex-hull
property 1s attractive.
x5 =T" - My* -Gy, -My-S; (9.49) We create CY and G¥ continuity across patch edges by making the four com-
S ! mon control points equal. G! continuity occurs when the two sets of four control
similarly,

points on either side of the edge are collinear with the points on the edge. In Fig. '

¥, =T -My" -Gy -My-S, zs,)=T" -Myg" -Gy -My-S.  (9.50) 9.25, the following sets of control peints are collinear and define four line seg-
Y - ments whose lengths all have the same ratio k: (P]}, P14’ P]S)’ (Pz:;,, P24, st_},
(P33, P34. P35), and (P43, P44, Pss). The teapot shown in Fig. 9.1 was modeled by
32 Bézier patches, all joined to ensure G' continuity.

The three 4 x 4 matrixes Gy . Gy, and Gy_ play the same role for Hermite sur-
faces as did the single matrix Gy for curves.
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Figure 9.25 Two Bézier patches joined along the edge Py4, Poa, Psy, and Pyy.

9.3.3 B-Spline Surfaces

B-spline patches are represented as
(s, 0 =T" Mp" - Ggg_- Mg, - S,
s, H=T" - Mg - Ggs, Mg - S, (9.52)
(s, ) =T" - Mp" - Gp_ - My, - S.

2 continuity across boundaries is automatic with B-splines; no special arrange-
ments of control points are needed, except to avoid duplicate control points, which
create discontinuities.

Bicubic nonuniform and rational B-spline surfaces and other rational surfaces
are similarly analogous to their cubic counterparts. All the techniques for display
carry over directly to the bicubic case.

9.3.4 Normals to Surfaces

The normal to a bicubic surface, needed for shading (Chapter 14), for performing
interference detection in robotics, for calculating offsets for numerically controlled
machining, and for doing other calculations, is easy to find. From Eq. (9.42), the s
tangent vector of the surface O(s, 1) is

9 9T M e M- =T MG MO
S0 =2 (T MG M-$) =T -M"-G-M-2(8)

=T" MY G- -M-[35% 25 1 0]F, (9.53)

and the ¢ tangent vector is

Figure 9.26

A single surface patch
displayed as curves of
constant s and constant 1.
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O 0(s.t) = (T" MY G- M-S =T - M .G-M.
$0(.0 =21 M-G-M-85) = LT M -G-M-S

=322t 10T-M'.G-M-5. (9.54)

Both tangent vectors are parallel to the surface at the point (s, ), and their cross-
product is therefore perpendicular to the surface. Notice that, if both tangent vec-
tors are zero, the cross-product is zero, and there is no meaningful surface normal.
Recall that a tangent vector can go to zero at join points that have C ! but not G!
continuity.

Each of the tangent vectors is, of course, a 3-tuple, because Eq. (9.42) repre-
sents the x, ¥, and z components of the bicubic. With the notation x; for the x com-
ponent of the s tangent vector, y, for the y component, and z, for the z component,
the normal is

% Q(s, 1) % 'g_r O(s,t) =2 —¥2s X —2Xs XYp— XYl (9.55)

The surface normal is a biquintic (two-variable, fifth-degree) polynomial and
hence is fairly expensive to compute. [SCHW®&2] gives a bicubic approximation
that is satisfactory as long as the patch itself is relatively smooth.

9.3.5 Displaying Bicubic Surfaces

Program 9.2

Function to display bicubic
patch as a grid. Functions
X(s,1), Y(s,t), and Z(s,t)
evaluate the surface using
the coefficient matrix
coefficients.

Like curves, surfaces can be displayed by iterative evaluation of the bicubic poly-
nomials. Iterative evaluation is best suited for displaying bicubic patches in the
style of Fig. 9.26. Each of the curves of constant s and constant f on the surface is
itself a cubic, so display of each of the curves is straightforward, as in Prog. 9.2.

Brute-force iterative evaluation for surfaces is even more expensive than for
curves, because the surface equations must be evaluated about 2/8% times. For
& = 0.1, this value is 200; for § = 0.01, it is 20,000. These numbers make the alter-
native, forward-differencing method even more attractive than it is for curves. This
method and other useful ways to display bicubic surfaces are presented in
[FOLES0; FORR79].

typedef float Coeffs[4][4][3];

void DrawSurface( Coeffs coefficients, int ns, int nt, intn )
[* the variable coefficients are the coefficients for Q(s,t) */
/* ns and nt are the number of curves of constant s and t to be drawn */

{
float del, dels, delt, s, t;
int i, j;
1* Initialize */
del=1.0/n; /* Step size to use in drawing each curve */
dels=1.0/(ns—1); /* Step size in s when moving to next curve of constant t */
delt=1.0/(nt—1); /* Step size in t when moving to next curve of constant s */




Representation of Curves and Surfaces Quadric Surfaces 357

* The equations for y(s, t) and z(s, 1) are derived in an identical fashion. The
*D = * )
for (r&lwzv BSIC:Jrr:fSES'fI ()x{mStant 8, fors=0.0, dels, 2dels, ... 1.0/ functions X(s, 1), Y(s, 7), and Z(s, r), which are required for Prog. 2.2, can be coded
e Hels- ' directly from the x(s, ), y(s, #), and z(s, 1) expressions. Functions for drawing other
/* Draw a curve of constant s, varying t from 0.0 t0 1.0 */ types of surfaces can be developed just as easily as for the Bézier surface.
/* X, Y, and Z are functions to evaluate the bicubics for a given s and t */
MoveAbs3(X(s, 0.0), Y{(s, 0.0), Z(s, 0.0)); i = :
for (j=0:]<n:j++) 9.4 QUADRIC SURFACES
t=j* del;
/* n steps are used as t varies from 0.0 to 1.0 for each curve */

: LineAbs3(X(s, 1), Y(s, 1), Z(s, t)); The implicit surface equation of the form

}

{* Draw nt curves of constant t, for t=0.0, delt, 2delt, ... 1.0 */
for (i=0;i<nti++){

flx,v,2) = ax® + by2 +c+ 2dxy + 2eyz 4+ 2fxz + 2gx + 2hy + 2jz+ k=0 (9.57)

defines the family of quadric surfaces. For example, if « = b = ¢ = =k = 1 and the
e N remaining coefficients are zero, a unit sphere is defined at the origin. If @ through f

t=1"delt; ; : i _ _— T

/* Draw a curve of constant t, varying s from 0.0 to 1.0 */ are zero, a plane is defined. Quadric syrfaces are pa.rtrculdrly useful in specialized

MoveAbs3(X(0.0, t), Y(0.0, 1), Z(0.0, 1)); 'tlppllcatlon_s such as molem-llar modeling [PORT79; MAX7'9] and ha}ve also been

for (j=0;j<n;j++){ integrated into solid-modeling systems. Recall, too, that rational cubic curves can
s=j*del; represent conic sections; similarly, rational bicubic surfaces can represent quad-
/* n steps are used as s varies from 0 to 1 for each curve */ rics. Hence, the implicit quadratic equation is an alternative to rational surfaces, if
LineAbs3(X(s, 1), Y(s, t), Z(s, 1)); only quadric surfaces are being represented. Other reasons for using quadrics

include ease of

}

} Computing the surface normal

The functions X(s, 7), ¥(s, f), and Z(s, 1) can be easily developed for a specific Testing whether a point m on the surlfage [just substitute the point into Eq.
type of surface. As an example, we will consider a Bézier surface. From Eq. (9.51), (9.57), evaluate, and test for a result within some € of zero]
the x(s, 1) equation can be rewritten as Computing z given x and y (important in hidden-surface algorithms—see
Chapter 13)

Calculating intersections of one surface with another.

(1-15)?

(5,0 = [(1 =% 301 — 12 31— 1) ]Gy, g“'i(ll‘ ”; . (9.56)
s7(l—s
53 An alternative representation of Eq. (9.57) 1s

. - . T =

just by multiplying out the 7" - MBT and My - § matrices. Recall that GB,{ is the 5 =1, i228)
matrix of the x component of the control points, which are shown in Fig. 9.24, so it it

can be written as e

(9.59)
Py Py Py Py ¢
& = Py Py Py Py hoj
B, = : .
P13 Py Py Py

P Py Py P The surface represented by ) can be easily translated and scaled. Given a 4 x 4

. x transformation matrix M of the form developed in Chapter 5, the transformed
Finally, the completely expanded form of Eq. (9.56) can be written as quadric surface Q’ is given by

x(s, 1) (1= (Pi, (1 =% +3P15, (1 — )%t +3P13 (1 — )12 + Piy. 1) g=MHY. .0 ML, (9.60)

— )25 (P, _ 3 _ 2 2 3 i
L =) ;(P‘]‘(l I)g + 3P (1 r)f + 3Py, (1 =0t + Py, 1) The normal to the implicit surface defined by flx,y, z) =0 is the vector
3(1=)s"(P31, (1 = 1) +3P3, (1 = 1)°1 + 3Py (1 — )1* + Py 1) [dfidx dfidy dfidz]. This surface normal is much easier to evaluate than is the sur-
sj’(Pm‘(l = g7 e 3Py (1 — 1%k 3Py (1 —)r° + Py, 9 face normal to a bicubic surface discussed in Section 9.3.4.
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In this chapter we have concentrated on geometric models; we will as wel] i,
Chapter 10. In a world made entirely of simple geometric objects, these modelg
would suffice. But many natural phenomena are not efficiently represented by geo.-
metric models, at least not on a large scale. Fog, for example, is made up of tiny
drops of water, but using a model in which each drop must be individually placed
is out of the question. Furthermore, this water-drop model does not accurately rep-
resent our perception of fog: We see fog as a blur in the air in front of us, not a5
millions of drops. Our visual perception of fog is based on how fog alters the lighg
reaching our eyes, not on the shape or placement of the individual drops. Thus, tq
model the perceptual effect of fog efficiently, we need a different model. In the
same way, the shape of a leaf of a tree may be modeled with polygons and its stem
may be modeled with a spline tube, but to place explicitly every limb, branch
twig, and leaf of a tree would be impossibly time consuming and cumbersome. ’
You will find a comprehensive discussion of advanced modeling techniques in
Chapter 20 of [FOLE90]; here we will discuss two specialized methods, which are
surprisingly easy to implement and which produce startlingly realistic images,

9.5.1 Fractal Models

Fractals have recently attracted much attention [VOSS87, MANDS2; PEITS6].
The images resulting from them are spectacular, and many different approaches to
generating fractals have been developed. The term fractal has been generalized by
the computer graphics community to include objects outside Mandelbrot’s original

definition. It has come to mean anything which has a substantial measure of exact
or statistical self-similarity, and that is how we use it here, although its precise
mathematical definition requires statistical self-similarity at all resolutions. Thus,
only fractals generated by infinitely recursive processes are true fractal objects. On
the other hand, those generated by finite processes may exhibit no visible change
in detail after some stage, so they are adequate approximations of the ideal. What
we mean by self-similarity is best illustrated by an example, the von Koch snow-
flake. Starting with a line segment with a bump on it, as shown in Fig. 9.27, we

Figure 9.27  Construction of the von Koch snowflake: each segment in (a) is replaced by an exact copy of

the entire figure, shrunk by a factor of 3. The same process is applied to the segments in (b) to
generate those in (c).

Specialized Modeling Techniques 359

replace each segment of the line by a figure exactly like the original line. This pro-
cess is repeated: Each segment in part (b) of the figure is replaced by a shape
exactly like the entire figure. (It makes no difference whether the replacement is by
the shape shown in part (a) or by the shape shown in part (b); if the one in part (a)
is used, the result after 2" steps is the same as the result after » steps if each seg-
ment of the current figure is replaced by the entire current figure at each stage.) If
this process is repeated infinitely many times, the result is said to be self-similar:
The entire object is similar (i.e., can be translated, rotated, and scaled) to a subpor-
tion of itself.

Associated with this notion of self-similarity is the notion of fractal dimen-
sion. To define fractal dimension, we shall examine some properties of objects
whose dimension we know. A line segment is 1D; if we divide a line into N equal
parts, the parts each look like the original line scaled down by a factor of N = N L
A square is 2D: if we divide it into N parts, each part looks like the original scaled
down by a factor of /N =N 122 (For example, a square divides nicely into nine
subsquares; each one looks like the original scaled by a factor of é.) What about
the von Koch snowflake? When it is divided into four pieces (the pieces associated
with the original four segments in Fig. 9.27(a), each resulting piece looks like the
original scaled down by a factor of 3. We would like to say it has a dimension d,
where 414 = 3. The value of d must be log(4)/log(3) = 1.26... . This is the defini-
tion of fractal dimension.

The most famous two fractal objects deserve mention here: the Julia—Fatou set
and the Mandelbrot set. These objects are generated from the study of the rule
x = x2 + ¢ (and many other rules as well—this is the simplest and best known).
Here x is a complex number,! x=a + bi. If a complex number has modulus < 1,
then squaring it repeatedly makes it go toward zero. If it has a modulus > 1,
repeated squaring makes it grow larger and larger. Numbers with modulus 1 still
have modulus 1 after repeated squarings. Thus, some complex numbers “fall
toward zero” when they are repeatedly squared, some “fall toward infinity,” and
some do neither—the last group forms the boundary between the numbers
attracted to zero and those attracted to infinity.

Suppose we repeatedly apply the mapping x — x“ + ¢ to each complex num-
ber x for some nonzero value of ¢, such as ¢ = —0.12375 + 0.056805i; some com-
plex numbers will be attracted to infinity, some will be attracted to finite numbers,
and some will go toward neither. Drawing the set of points that go toward neither,
we get the Julia—Fatou set shown in Fig. 9.28(a).

Notice that the region in Fig. 9.28(b) is not as well connected as is that in part
(a) of the figure. In part (b), some points fall toward each of the three black dots
shown, some go to infinity, and some do neither. These last points are the ones
drawn as the outline of the shape in part (b). The shape of the Julia—Fatou set evi-
dently depends on the value of the number c. If we compute the Julia sets for all

2

L1 you are unfamiliar with complex numbers, it suffices to treat i as a special symbol and merely to know
the definitions of addition and multiplication of complex numbers. If z = ¢ + 4 is a second complex num-
ber, then x + z is defined to be (@ + ¢) + (b + d)i, and xz is defined to be (ac — by + (ad + be)i. We can
represent complex numbers as points in the plane by identifying the point (a, b) with the complex number
(@ + hi). The modulus of the number a + bi is the real number (a® + bH'2, which gives a measure of the
“size” of the complex number.
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Figure 9.28

The Julia—Fatou set. (a) c=—0.12375 + 0.056805/. (b) ¢ = —0.012 + 0.74i.

possible values of ¢ and color the point ¢ black when the Julia—Fatou set is con-
nected (i.e, is made of one piece, not broken into disjoint “islands™) and white
when the set is not connected, we get the object shown in Fig. 9.29, which is
known as the Mandelbrot set. Note that the Mandelbrot set is self-similar in that,
around the edge of the large disk in the set, there are several smaller sets, each
looking a great deal like the large one scaled down.

Fortunately, there is an easier way to generate approximations of the Mandel-
brot set: For each value of c, take the complex number 0 = 0 + 0i and apply the
process x — x° + ¢ to it some finite number of times (perhaps 1000). If after this
many iterations it is outside the disk defined by modulus < 100, then we color ¢
white; otherwise, we color it black. As the number of iterations and the radius of
the disk are increased, the resulting picture becomes a better approximation of the
set. Peitgen and Richter [PEIT86] give explicit directions for generating many
spectacular images of Mandelbrot and Julia—Fatou sets.

These results are extremely suggestive for modeling natural forms, since
many natural objects seem to exhibit striking self-similarity. Mountains have peaks
and smaller peaks and rocks and gravel, which all look similar; trees have limbs
and branches and twigs, which all look similar; coastlines have bays and inlets and
estuaries and rivulets and drainage ditches, which all look similar. Hence, model-
ing self-similarity at some scale seems to be a way to generate appealing-looking
models of natural phenomena. The scale at which the self-similarity breaks down
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Figure 9.29

The Mandelbrot set. Each point ¢ in the complex plane is colored black if the Julia set for the
process x — X° + ¢ is connected.

is not particularly important here, since the intent is modeling rather than mathe-
matics. Thus, when an object has been generated recursively through enough steps
that all further changes happen at well below pixel resolution, there is no need to
continue. '

Fournier, Fussell, and Carpenter [FOUR82] developed a mechanism for
generating a class of fractal mountains based on recursive subdivision, It is easiest
to explain in 1D. Suppose we start with a line segment lying on the x axis, as
shown in Fig. 9.30(a). If we now subdivide the line into two halves and then move
the midpoint some distance in the y direction, we get the shape shown in Fig.
9.30(b). To continue subdividing each segment, we compute a new value for the
midpoiqt of the segment from (x;, ¥;) to (x;, 1. ¥;41) as follows: x.q = % (x; + xp41),
Vnew = 3 Oi + Yir1) + P(xipq — X;) R(xpey,), where P() is a function determining the
extent of the perturbation in terms of the size of the line being perturbed, and R() is
a random number? between 0 and 1 selected on the basis of x,,, (see Fig. 9.30c).
If P(s) = s, then the first point cannot be displaced by more than 1, each of the next
two points (which are at most at height % already) cannot be displaced by more
than l, and so on. Hence, all the resulting points fit in the unit square. For
P(s) = 5%, the shape of the result depends on the value of a; smaller values of a
yield larger perturbations, and vice versa. Of course, other functions, such as
P(s5) =277, can be used as well.

2R() is actually a random variable, a function taking real numbers and producing randomly distributed
numbers between 0 and 1. If this is implemented by a pseudorandom-number generator, it has the ad-
vantage that the fractals are repeatable: We can generate them again by supplying the same seed to the
pseudorandom-number generator.
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(a) (b) ()

Figure 9.30

A line segment on the x axis. (b) The midpoint of the line has been translated in the y direction
by a random amount. (¢) The result of one further iteration.

Fournier, Fussell, and Carpenter use this process to modify 2D shapes in the
following fashion. They start with a triangle, mark the midpoint of each edge, and
connect the three midpoints, as shown in Fig. 9.31(a). The y coordinate of each
midpoint is then modified in the manner we have described, so that the resulting
set of four triangles looks like Fig. 9.31(b). This process, when iterated, produce;
quite realistic-looking mountains, as shown in Color Plate 11 (although, in an
overhead view, one perceives a very regular polygonal structure).

Notice that we can start with an arrangement of triangles that have a certain
shape, then apply this process to generate the finer detail. This ability is particu-
larly important in some modeling applications, in which the layout of objects in a
scene may be stochastic at a low level but ordered at a high level: The foliage in an
ornamental garden may be generated by a stochastic mechanism, but its arrange-
ment in the garden must follow strict rules. On the other hand, the fact that the

Figure 9.31

(a) The subdivision of a triangle into four smaller triangles. The midpoints of the original
triangle are perturbed in the y direction to yield the shape in (b).
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high-level structure of the initial triangle arrangement persists in the iterated subdi-
visions may be inappropriate in some applications (in particular, the fractal so gen-
erated does not have all the statistical self-similarities present in fractals based on
Brownian motion [MANDS2]). Also, since the position of any vertex is adjusted
only once and is stationary thereafter, creases tend to develop in the surface along
the edges between the original triangles, and these may appear unnatural.

Rendering fractals can be difficult. If the fractals are rendered into a z-buffer,
displaying the entire object takes a long time because of the huge number of poly-
gons involved. In scan-line rendering. it is expensive to sort all the polygons so
that only those intersecting the scan line are considered. But ray tracing fractals is
extremely difficult, since each ray must be checked for intersection with each of
the possibly millions of polygons involved. Kajiya [KAJI83] gave a method for
ray tracing fractal objects of the class described in [FOURS82], and Bouville
[BOUVRS] improves this algorithm by finding a better bounding volume for the
objects.

9.5.2 Grammar-Based Models

Smith [SMIT84] presents a method for describing the structure of certain plants,
originally developed by Lindenmayer [LIND68], by using parallel graph grammar
languages (L-grammars), which Smith called graftals. These languages are
described by a grammar consisting of a collection of productions, all of which are
applied at once. Lindenmayer extended the languages to include brackets, so the
alphabet contained the two special symbols, “[” and “].” A typical example is the
grammar with alphabet {A, B, [, ]} and two production rules:

1. A—=AA
2. B — A[BJAA[B]

Starting from the axiom A, the first few generations are A, AA, AAAA, and so on;
starting from the axiom B, the first few generations are

0. B
1. A[BJAA[B]
2. AA[A[BJAA[B]JAAAA[A[B]AA[B]]

and so on. If we say that a word in the language represents a sequence of segments
in a graph structure and that bracketed portions represent portions that branch from
the symbol preceding them, then the figures associated with these three levels are
as shown in Fig. 9.32.

This set of pictures has a pleasing branching structure, but a somewhat more
balanced tree would be appealing. If we add the parentheses symbols, “(” and *),”
to the language and alter the second production to be A[B]AA(B), then the second
generation becomes

2. AA[A[BJAA(B)JAAAA(A[B]JAA(B))
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AA A
A
B B A
B A
A AA A |A
A
B A
A B B A

Figure 9.32

Tree representations of the first three words of the language. All branches are drawn to the |eft
of the current main axis.

If we say that square brackets denote a left branch and parentheses denote a right
branch, then the associated pictures are as shown in Fig. 9.33. By progressing to
later generations in such a language, we get graph structures representing
extremely complex patterns. These graph structures have a sort of self-similarity,
in that the pattern described by the nth-generation word is contained (repeatedly, in
this case) in the (n + 1)th-generation word.

Generating an object from such a word is a process separate from that of gen-
erating the word itself. Here, the segments of the tree have been drawn at succes-
sively smaller lengths, the branching angles have all been 45°, and the branches go
to the left or to the right. Choosing varying branching angles for different depth
branches, and varying thicknesses for the lines (or even cylinders) representing the
segments, gives different results; drawing a “flower” or “leaf” at each terminal
node of the tree further enhances the picture. The grammar itself has no inherent
geometric content, so using a grammar-based model requires both a grammar and
a geometric interpretation of the language.

This sort of enhancement of the languages and the interpretation of words in
the language (i.e., pictures generated from words) has been carried out by several

B
B
A
A A

B A
A
A A
B|lA A

A A

=Y B B
B A A

A
A

Figure 9.33  Tree representations of the first three words, but in the language with two-sided branching.

We have made each segment of the tree shorter as we progress into further generations.
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researchers [REFF88; PRUS88]. The grammars have been enriched to allow us to
keep track of the “age” of a letter in a word, so that the old and young letters are
transformed differently (this recording of ages can be done with rules of the form
A—B,B—-C,C—D..., Q- QG[Q], so that no interesting transitions occur
until the plant has “aged”). Much of the work has been concentrated on making
grammars that accurately represent the biology of plants during development.

At some point, however, a grammar becomes unwieldy as a descriptor for
plants: Too many additional features are added to it or to the interpretation of a
word in it. In Reffye’s model [REFF88], the simulation of the growth of a plant is
controlled by a small collection of parameters that are described in biological
terms and that can be cast in an algorithm. The productions of the grammar are
applied probabilistically, rather than deterministically.

In this model, we start as before with a single stem. At the tip of this stem is a
bud, which can undergo one of several transitions: it may die, it may flower and
die, it may sleep for some period of time, or it may become an internode, a seg-
ment of the plant between buds. The process of becoming an internode has three
stages: the original bud may generate one or more axillary buds (buds on one side
of the joint between internodes), a process that is called ramification: the intern-
ode is added; and the end of the new internode becomes an apical bud (a bud at
the very end of a sequence of internodes). Figure 9.34(a) shows examples of the
transition from bud to internode.

Each of the buds in the resulting object can then undergo similar transitions. If
we say the initial segment of the tree is of order 1, we can define the order of all
other internodes inductively: Internodes generated from the apical bud of an order-
i internode are also of order-i; those generated from axillary buds of an order-i
internode are of order (i + 1). Thus, the entire trunk of a tree is order 1, the limbs
are order 2, the branches on those limbs are order 3, and so on. Figure 9.34(b)
shows a more complicated plant and the orders of various internodes in the plant.

Converting this description into an actual image of a tree requires a model for
the shapes of its various components: an order-1 internode may be a large tapered
cylinder, and an order-7 internode may be a small green line, for example. The sole
requirement is that there must be a leaf at each axillary node (although the leaf
may fall at some time).

Finally, to simulate the growth of a plant in this model, then, we need the fol-
lowing biological information: the current age of the model, the growth rate of
each order of internode, the number of axillary buds at the start of each internode
(as a function of the order of the internode), and the probabilities of death, pause,
ramification, and reiteration as functions of age, dimension, and order. We also
need certain geometric information: the shape of each internode (as a function of
order and age), the branching angles for each order and age, and the tropism of
each axis (whether each sequence of order-i internodes is a straight line, or curves
toward the horizontal or vertical). To draw an image of the plant, we need still
more information: the color and texture of each of the entities to be drawn—inter-
nodes of various orders, leaves of various ages, and flowers of different ages. Very
convincing tree models can be produced by grammar-based models; see Color
Plate 12.
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Apical bud

Node

Leaf

A— Internode

Axillary bud +——————— Order-1 axjg

(&) (b)

Figure 9.34

SUMMARY

Examples of plant growth. (a) The bud at the tip of a segment of the plant can become an
internode; in so doing, it creates a new bud (the axillary bud), a new segment (the
internode), and a new bud at the tip (the apical bud). (b) A more complex plant, with orders
attached to the various internodes.

This chapter has only touched on important ideas concerning curve and surface
representation, but it has given sufficient information so that you can implement
interactive systems using these representations. Theoretical treatments of the mate-
rial can be found in texts such as [BART87; DEBO78; FAUX79; MORTS85].

Polygon meshes, which are piecewise linear, are well suited for representing
flat-faced objects, but are seldom satisfactory for curve-faced objects. Piecewise
continuous parametric cubic curves and bicubic surfaces are widely used in com-
puter graphics and CAD to represent curve-faced objects because they

m Permit multiple values for a single value of x or y
m Represent infinite slopes

m Provide local control, such that changing a control point affects only a local
piece of the curve

m Can be made either to interpolate or to approximate control points, depending
on application requirements

® Are computationally efficient

m Are easily transformed by transformation of control points.

Although we have discussed only cubics, higher- and lower-order surfaces
also can be used. The texts mentioned previously generally develop parametric
curves and surfaces for the general case of order n.

We have also discussed briefly some techniques for modeling natural phenom-
ena; in particular, fractal and grammar-based approaches.
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9.1 Find the geometry matrix and basis matrix for the parametric representation
of a straight line given in Eq. (9.11).

9.2 Show that, for a 2D curve [x(f) _)‘(t)]T, Gl continuity means that the geomet-
ric slope dy/dx is equal at the join points between segments.

93 Letyn=(. ) for0<r<1,andletn(t)=2t+ 1,2 +dt+ 1) for0<s< 1,
Notice that (1) = (1, 1) = n(0), so y and 5 join with o continuity.

a. Plotn(nand y(r) for0<r< 1.
b. Determine whether 7(r) and y(f) meet with C' continuity at the join point.

; d
(You will need to compute the vectors ﬂ(1) and —U(O) to check your
answer,) dt dt
¢. Determine whether n(f) and y(f) meet with G continuity at the join
point.(You will need to check ratios from part(b) to check your answer.)

9.4 Consider the paths
YO =(P-2t+1,P=2¢+n and nO=EF+1,7),

both defined on the interval 0 < ¢ £ 1. The curves join, since (1) = (1, 0) = n(0).
Show that they meet with C 1 continuity, but not with Gl continuity. Plot both
curves as functions of ¢ to demonstrate exactly why this behavior occurs.

9.5 Show that the two curves p(£) = (> — 2t, 1) and (1) = (1> + 1, t + 1) are both
C' and G' continuous where they join at y(1) = 5(0).

9.6 Analyze the effect on a B-spline of having in sequence four collinear control
points.,

9.7 Write a program to accept an arbitrary geometry matrix, basis matrix, and list
of control points, and to draw the corresponding curve.

9.8 Find the conditions under which two joined Hermite curves have C ! continu-
ity.

9.9 Suppose that the equations relating the Hermite geometry to the Bézier
geometry are of the form R| = B(P, — P), Ry = B(P4 — P3). Consider the four
equally spaced Bézier control points P} = (0, 0), P, = (1, 0), P; = (2, 0),
P, = (3, 0). Show that, for the parametric curve Q(¢) to have constant velocity from
P to Py, the coefficient § must be equal to 3.

9.10 Explain why Eq. (9.35) for uniform B-splines is written as Q,(t — #;), whereas
Eq. (9.37) for nonuniform B-splines is written as Q1).

9.11 Given a 2D nonuniform B-spline and an (x, y) value on the curve, write a pro-
gram to find the corresponding value of r. Be sure to consider the possibility that,
for a given value of x (or y), there may be multiple values of vy (or x).

9.12 Apply the methodology used to derive Egs. (9.49) and (9.50) for Hermite sur-
faces to derive Eq. (9.51) for Bézier surfaces.

9.13 Letty=0,1; = 1,1, =3, 13 =4, {; = 5. Using these values, compute B 4 and
each of the functions used in its definition. Then plot these functions on the inter-
val -3 <r<8.

9.14 Develop a program, similar to Example 9.2, for displaying Bézier surface
patches using the framework of Prog. 9.2. Your program should offer the option of
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displaying the control points for a specified patch, so that the user can select apy
one of them (using a locator) and move it to a new location. The patch shoylg then
be redrawn to reflect the new geometric constraint. Since the locator input is 2p
how will you associate it with a 3D control point? You can specify your own patc};
geomelry or use existing data, such as that for the teapot in Fig. 9.1. Complete data
for the teapot are included in [CROWS87].

The representations discussed in Chapter 9 allow us to describe curves and sur-
faces in 2D and 3D. Just as a set of 2D lines and curves does not need to describe
the boundary of a closed area, a collection of 3D planes and surfaces does not nec-
essarily bound a closed volume. In many applications, however, it is important to
distinguish among the inside, outside, and surface of a 3D object and to be able to
compute properties of the object that depend on this distinction. In CAD/CAM, for
example, if a solid object can be modeled in a way that adequately captures its
geometry, then a variety of useful operations can be performed before the object is
manufactured. We may wish to determine whether two objects interfere with each
other, for example, whether a robot arm will bump into objects in its environment,
or whether a cutting tool will cut only the material it is intended to remove. In sim-
ulating physical mechanisms, such as a gear train, it may be important to compute
properties such as volume and center of mass. Finite-element analysis is applied to
solid models to determine response to factors such as stress and temperature
through finite-element modeling. A satisfactory representation for a solid object
may even make it possible to generate instructions automatically for computer-
controlled machine tools to create that object or to rapidly prototype it using a
technique such as stereolithography, a process which uses a laser beam to form a
hardened object out of a bath of molten plastic. In addition, some graphical tech-
niques, such as modeling refractive transparency, depend on being able to deter-
mine where a beam of light enters and exits a solid object. These applications are
all examples of solid modeling. The need to model objects as solids has resulted in
the development of a variety of specialized ways to represent them. This chapter
provides a brief introduction to these representations.
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